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Summary 1

~

:’ﬁq consider in Adetail probit and 1nqgistic rearession models
when some of the predictors are measured with error. For nnrral
measurement errors, the functional and structural maximum
likelihood estimates (MLE) are consiiered; in the functional case
the MLE is not generallv consistent. Non-normality in the

structural case is also considered. By an example and a

simulation, we show that if the measurement error is larage, the
usual estimate of the probability of the event in question can be

substantially in error, especially for high risk groups., ;

Some key words: Prohit regression; Logistic regression;

Functional models; Structural models; Measurement errnrs.
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I. Intynduction

The Framinghco « Heart Study (Gordon & ¥annel, 1968; Truett,

Cornfield & Kannel, 1967) is an on-goning proswpective study of the

development of cardiovascular Adisease. This study has heen the
basis for a considerahle amount of epideminlogic research, much
of it through the use of logistic reqgresson. For exannle, there
has been considerable emphasis on analyzing the wprobabilitv of

developing corsnary heart disease (CHD). In this instance, the

response is binary:

Y =1 means persons develops CHD (1.1)

= 0 means person does not develop CHD,

Many of the analyses have attempted §o relate haseline risk
factors to the pronability of developina CHD; these risk factors
include systolic and diastolic blood pressure, serum cholesterol,
nistory of smoking, etc. Ordinarily, at some point in the
analysis, multiple logistic regression is employed.

It is well-known that many of the baseline risk factors are
measured with error; systolic hlood pressure is a good example
(Rosner & Polk, 1979). One of us was asked by a number of
investigators and at least one referee whether such measurement
errors could substantially effect the logistic regression
estimates and, if so, what could be done to correct for the
measurement error. The present study is an outgrowth of these
questions, although there are many important practical facets of

the problem yet to he investigated.




In an interesting vaper, Michalek an? Trioathi (1980)

discuss the effect of measurement error on oridinary logistic

regression; sece also Ahmed and lLachenbruch (1975). Michalek and .
Tripathi conclude that ordinary logistic reqression will not he
too badly Adisturbed by measurement error as long as such error is
moderate. We feel that our methods, in providing alternatives to
ordinary logistic reqression, will help the experimenter to qget a
more precise understanding of the effect of the measurement
errors, especially if they are severe.

Our model is as follows. We have a sample of N persons from ;
a particular population, e.g., males aged 45-54. The ith person
in the sample is assumed to have a vector of haseline risk o
factors X with the probability of developing disease (CHD) %
given by

P(Y; 1, eeer N, (1.2)
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where G(*) is a known distribhution function such as

[}

G(a) {1 + exp(a)}-l (Logistic Regression) g

G(a)

¢(a), (Prohit Reqression),

where ¢ (¢*) is the standard normal distribution function. We '
will return to probit regression later, hut it is important to %

remember that probit and loqgistic reqression usually give similar

results (Halperin, Wu & Gordon, 1979; Gordon, et al., 1977).
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¥e will vmartition the risk factors X5 into components

observed without and with error, so that

x; = (Wi z3) (1.3)
Bo = (o182

In (1.3), {gi} can be observed at nearly ~exact levels; age and
sex are examples. 1In (1.3), the {Ei‘ are measured with

nontrivial error and cannot be obhserved; rather we only obscrve
Z. = E. + U.. (1.4)

To begin the discussion we are qoing to assume that the {gi} are
independently and normally distributed with mean zero and
covariance matrix ZM assumed nonsinqﬁlar.

When the risk factors {;i} observed with error are assumed
to be constants, the model is usuallv called the functional model
(Kendall & Stuart, 1979).  1In this instance, 8 and the N values
{gi} are unknown parameters, and the number of these unknown
parameters increases with the sample size N, so that classical
maximum likelihood theory does not apply. In fact, in the next
section we show that in a very simple logistic regqression model,
the functional maximum likelihood estimate (MLF) of B8 is not
consistent when ZM is known. This is in contrast to the

functional MLE for linear reqression, which 1is qenerally

consistent.
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In Section 3 we study the more tractable structural model,
wherein the {Zi} are themselves independent with common
distribution function P, which we will also initially supnose is

that of a normal random vector with mean 4 and covariance L.

In effect, we study a conditional likelihood, replacing (1.2) hy

In Section 4, the non-normal case is discussed, 1In Section
5, we present a small Monte-Carlo studv. In Section 6, we
analyze the effect of measurement error on nredicting the

probabhility of CHD on the basis of svstoliz bhlood »nressure.

2. The Functinnal Case

‘Consider logistic reqression throuah the oriqin,

_ . N . -1
P(Yi = llci) = {1 + exp(loci)} ' {(2.1)

where ao and {ci} are scalars. Because of measurement error, we

observe
C, = c, +v,., (2.2)

where the errors {vi} are normally distributed with mean zero

and variance 03 (0 < ci < »), For purposes of this example, we

will assume o: is known to the investigator.




In the circumstance that the measurement error variance 1is
known, for linear regression the functional errors-in-variables
maximum likelihood estimate of « i3 generally coasistent anA
asymptotically normally Adistributed. We now outline why this
happy circumstance does not carry over to logistic regression.

The maximum likelihood estimator (MLE) of g for the

functional model (2.1)-(2.2) with oﬁ Fnown maximizes

[YilogG(ac. ) + (l-Yi)loq{ 1-G(aci)}]

1

i o~2A
[y

(Ci—Ci)z,
1

- (2007

HU1IZ =

i

where

3(e) = {1 + exp(t)} ™}

is the logistic Aistribution function. For this functional
model, the parameters are {an, (ci)}. For qgiven a, the estimates

of {ci} satisfy

ci(a) = C. - ao [G{a;i(u)] - Yi]' (2.4)
i = l, es oy N.

The MLE a, satisfies (2.4) and

If the MLE exists and is unique, ani if

ideniaititin




l/ -
N 2(a0 - ao)

is asymptotically normally Adistributedl with mean zero and
positive, finite asymptotic variance, then one can prnve (see
Appendix) that
N .
-1

: Iy o Loy 0
N i2=1 ci(an)[Gkuoci(un), Y, Po. (2.6)

-

In (2.6), ci(ao) satisfies (2.4). It turns out that (2.6) does

not hold even in the following simple case: take c, = & 0.5 (+
if i is odd, - otherwise) and cé = 1 (we usel numerical

intergration to check this).
The preceding argument shows that even in the simnlest of
ca%eé, the functional loqistic errors-in-variables MLE will not
be unique and asymptotically normal in the nsual VN sense. We
believe this phenomenon carries over to other forms €or the '
distribution function Sucﬁ as nrobit regression. 1In fact, for

the model (2.1) = (2.2) with ofj

known, we have bheen unahle to
construct any consistent and asvmptotically normal estimate of

Go.

e

3. Structural Case: Nnrmal DNistribution

The model is given by (1.2) - (1.4), but in the

structural case we eliminate the nuisance parameters {gi} by

assuming they are independent and normally Adistributed with mean

-

e

vector U, and covariance matrix 27. The error vectors {u,] are
- -1

,_:_...‘_ -

|




marqginal likelihood of the obhserved data hy

).

LiGiBoyrBnarimetarty

G ) .
L 'B—OI'Q-OZ'LM’H—Z'YZ)
N
_ Y. (1-Y.)
= -H Si+ 1 Si— 1
i=1

NDetailed calculations show that

the moment we shall assume that W Xz and EM

conditional likelihoods for Yi given Zi' is

where
S = A, [G(WBr+ 2 Bn,)exp{-0.5(Z .~ z)’)t—l
i+ 177 =i=01" = =02 = G M
” —1
x exp{- 0.5(z - ) IOz -,
A, = (20)"P(In, 11 t1y T 2
1 M z '

also assumed tn be independent (of one another and of

{gi}) normal random vectors with mean 0 and covariance I

discuss more realistic cases na2ar the end of the sectinn.

are known;

For

we

For a

given general distribation function G in (1.2), we denote the

Nefining the Aimension of By to be p, this marginal likelihood,

which can more intuitively be written as the product of the

nronortional to

(2;,- 2}

)}dz,

(3.1)

(3.2)

(3.3)

and Si_ is defined by replacing G (¢) by 1 - G(*) in (3.2).




dyile

1 /7
| . (2ﬂ)p’“exp(—0.5d

23 + 0’5dliA2

In effect, the calculation of the likelihond depends only on

being ahle to evaluate (3.4). This is no easy matter in general

for the logistic function G6(t) = {1 + exp(t)}-l, although if the

number of variables measured with error is small, (3.4) can in
principle be evaluated hy numerical inteuration. For nrobit
regression, (3.4) can be evaluated exnlicitly; in fact,

_1
1 + B2 A, 8.y 72 b (3.5)

tiy = ol(wisy, + da7,A 802

it 01 ¥ 91122 Bo2) (1 + Egphy
Since logistic and probit reqgression qgenerally qgive similar
estimates of event probabilities (Halmerin, Wu & Gordon, 1979),
in the rest of the paper we confine our discussion to probit
regression.
In most instances, the nuisance parameters

T and I will bhe unknown. Joint estimation of these

Ear b2 M
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paraqacters and BO through the Tikelihood (3.1) may bhe

computatinnally feasible hy such devices o the E-YM algorithm
{Dempster, Lairdl & Rubin, 1977), Aalthonigh this remnains to he
explored. A simpler and reasonable alvernative is through the
method of onseudo maximua l1ik~liho 1 ~stimation (PMLE - see %Gong &

Samaniego, 198l). Computing PMLE's for EO simnly consists »F

finding estimates of ¢ _, £_and I, and »nliuyginaga these estimates

-7 z M

into (3.1). One ohvious estimate Ffor W, is

7., (3.6)

while an estimate for I_ + T, is

AN

N .
(T, + T, =N Po(Zym w2y - u ) {3.7)

One common way to estimate XM is hv replication. For exannle,

supvose that each variahle subiject to evrrvor but with unknown
covariance is measured twice. Call these replicates

7.

i Then, in terms of the earlier notation,

Zivr

7. = (2

2= (B * 2i,)/2e (3.9)

Since {Zi} have common covariance L we can compute the

4

estimates

L, = sample covariance of {(z., - z,,)/2}, (3.9)




= (£, + T - U,
z ( M z) M

The substitutions (3.6)-(3.10) provide an easy way to
consistent anl asymototically normal estimates of BO’ say £
There are nany wavs to estimate the covariance matrix of 6

method is the bhootstrap (FEfron, 1979; 19R1); this cousin to

jackknife merely requiress having enough conmouter time: to

calculate 90

replacement) samples of size N from the original Adata.

for sufficie.:ly many randomly drawn (with

[
Ny

(3.10)

obtain

0

“n

iy

r)t

the

Alternativelv, one could use the thenry of PMLA's agiven by Gong

and Samaniegon (1981) (actually, one mast aeneralize their

\

equations (2.5) and (2.6) slightly). The Aifficulty with this

acrvroach is also computational, 3s it invnlves taking derivatives

of the log of (3.1} with resvect o iin%'ioz'ﬁz'zy'im)‘

4, Structural Case: Non-Normal Distributions

In the nrevious section we have made the assumption that

hoth the neasurement errors {gi} and the stractural varame
{Zi} are normally distributed. One mav wish to take a more
nonpararetric view and not assume that either {gi} or {gi}
nnormal random variables. We will outline a method for this
problem, retricting ourselves to the fnallowing situation:

The random variabhle z; subiject t»H measurement

i

error is scalar.

The variabhle subject to measurement error is

ters

are

(4.1a)

(4.1h)

-




renlicated as in (3.83).

0Of course, if the comnon density h(z) of the {zi} were

assume that h(z) has a simpnle two-term Filgeworth expansion,

{1 - 03(21-32)/6 + c4(z4— 6z£+ 3)/24},

where u_ and oz are the mean and variance of the {zi) ang C3

Z

and cy4 are standard measures of skXewnes: and Yurtosis, Recause
of the replication assumed in {(4.1lh), these four parameters are
easily estimated, giving us a sample hased densitvy with which to

worX. The multivariate case can alsn be handled, see Johnson and

Yotz (1972).

Given that we either know or can estimate h{z), the methoAqd

of estimation we pronose is bhased on nonlinear regression.
has the anpealing feature that we do not need to know the

distribution of the measurement errors {ui} in defining the

¥nown, conditional likelihood methods ¢cnall bhe used as in the
previous Section. However, we are intarested in situations for

which h(z) is not commletely “nown. 9Dae very simnle device is to

€.0.y

- 1/2 12
hiz) = (2noz) exn[—O.%{(z—Jz)/oz‘ ] (4.2)

It

estimator. In particular, we will turn the onrohlem around and

consider the Adistribution of 25 aiven \f] and Wi

{recall, i{ = (31, Zi)}' Let h(zIYi, yi) he the conAitional

density of 1z, given Yi and L This is a comnlicated but easily

1

computed function of h{(z), Yi' Wi §01 anAd an. NDefine the

conditional means of {zi} by

je

|
|
|
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! : N = W, v =
r‘QOI' 302, Vv, gi) (ziFKi 7, !i)' (4.3)
In analogy with nonlinear regression, oy weiaghts Wity and wat,,
we propose minimizing
2
E{?i* - r(102’302’1'!i)} Yi (4.4)
2
+ {7, - . t 0,w. - - VY. -
R TSR PY 'Ll)} t Y1)

Actually computing the estimtes of 501 and B02 is quite
feasible bhecause it only relies on nonlinear regression.
Inference hased on the estimates is comnlex: we have no simple
large sample theory and suqqgest that hootstrap methodoloay he

used.

5. A Monte-Carlo Stuidv
A simulation study was performed for the nrobit model.

Specifically,
P(Y, = l!zi) = ¢(z. - 1), (i =1, ..., 200)
andi we observe
=z, +u,., j =1, 2.

Here {zi} and {uii} were independent normal random variables

with mean zero and variances 05 = oﬁ = 0.25. Thus, the

simulation concerns a situation in which the measurement error is
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larqe, as 15 the samnle size Y = 200, All compatations were
performed at the Mational Institutes ot Health Computing Center
using the SAS statistical packaae, specifically the bprocedure
NLIN. The experiments were replicated 100 times. The estimates
of Mo Ez ani S“ were ohtained as Jdescribed by (3.6) - (3.10).
In Tabhle 1, we list the means ani mean square ervors for the

F

estimatas of intercent (= ~1.0) andl slone (= 1.0) obhtained hy the

~ ~

usual »robit rearession (BOD, BlD\ and probit errors-in-

-

oF’ 81?). This table is a classical

variabhles (FIV) reqression (;
expression of the trade-off between bias and variance, especially
for the slopes. The usual probit slopes are badly hiased hut not
particularly variabhle. The probit FIV slones are relatively
unhiased but quite variable; overall, thev result in an
approximately 23% gain over the usuaal »robit regression in terms
of mean SqUAre error.

Often more important than the ostimates of individaul
parameters is the behavior of the estimated risk or probability
function as a function of the true value of the predictor:

- ~

Probit: ¢(80p+ ElP

Probit EIV: 5’(80E + B

z)

lEZ)'

In Fig. 1, we plot the average values of the risk or probahility
as a function of 2z, as well as the truec risk function; these were
averages over the 100 simulations for different values of z,

smoothed by spline interpolation, Note that the probit FIV risk
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function is approximately unhiased winile the usaal orobit risk
function is bhadly hiased for those at highest risk.

In estimating the risk function, it turns out that there is
not nearly the trade-off hetween bias and variance as therc is
for estimating individual varameters. In Fig. 2, w4 nlot the
mean square error functions At a functinn 2; agqain, mean square
errors were calculated for various z and then the function was
interpolated by a spline availanle in the SAS procedure GPLOT,
For the high risk cases, the prohit EIV is noticeably hetter than
the usual probit risk function. 1In Fig. 3, the ratios of mean
square errors for the prohit versus vnrobhit KIYV risk functions are
plotted.

We also experimented with the nonlincear least squares
methodologv of Section 4. “Je Followad the suqgqestions of Section
4 with the exception that we assume normality. The resulting
estimates had almnst the same mean s1aare arror properties as the
probit EIV estimators, a fact which we fourd both surnrising and

encouraging.

6. An Fxamole
To get some idea of the passible effects of measurement
error in a more realistic context, we considered some of the data
from the Framingham Heart Study (Gordon & ¥Xannol, 1968)., The
Framingham Study has followed a sample of the male and fenale
population of Framinagham (Massachusetts) hiennially since around
1950 in order to study the Adevelopment of carilinvascular

disease. For purnoses of this paper, data used here were on men

—~

t
"
'
'




aged 45-54, systolic blood oressures beina taken at exam four.
Individuals were called disecased cases i they developed coronary
heart discase within the six veilr interval after axam four,
There were 513 cases, of whom A6 wore eveatually considered to be
discased cases.

For the average of the twn gystolic bhlond pressures, we

estimated

1.14

QqQ

LN N

= 0,10 = 0.09 02

Q

Hence, the apparent measurement error was quite small, with the
usual prohit and probit FIV estimates of slone, intercept and
risk being only minimallv different. At this noint, we realized
that we were ianosring other sources of variation which might be
more appropriatelyv classified as "measurament error,™
Specifically, one might think of the variance of systolic blood

pressure as

2 2 2
0T + 0 + 0
s T ME '’
where
05 = population variance of the "true" svstolic

hlooAd pressures calculated at a fixed time, say

9:00 am,
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0= exam time of dav offcct; within individuzle

there is a diurnal effect for bhlond pressure,

sea2 Tomstock (1957) anA Gould, et al. (1921).
Nther effects may also be noted, e,q., those
which cnuld he attrihuted to nurse or phycsician
1 reading the hlood nressure or to the suhject's

nhysical or nsycholoagical 4disnosition.

8]

‘Mg = "mechanical" measuremant error as seen by

differences in two readings.

In the analysis based on (3.6) - {3.107), we had

- 2
02 = 02 + o
pA S
;2 = 02
M T MR

2. 2 }
[o] = C

YA S

"2 L. 2

Oy =01t ype

We have no estimate of o% for the Framinaham males aged 45-54, so

we decided upon the following device. Let 0<SPVARKL and define

N

2 ~ s ~ 5
= - Q
oz(new) PVAR Oy * (1 PVA.)GZ

oa(new) = {(1-PVAR)o , + DPVAR o,

2 ) !
M z




F—'—'—"——'——'
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Basically, PVAR is something like the nrondrtion of variance Aue
to diurnal or other unmcasured effecta,
In Fiqg., 4, we nlot the probit EIV ris¥ functinns for the

cases PVAR =0, 0.2, 0.4, r20resenting nn, mnderate and

Fig. 4 is that, if there is a larqge time of day effect, our
estimate (PVAR = 0.0) of the relationshin of risk for CHD and
"true" systolic blood pressuare could be badlv biased for high

risk patients.

substantial time of day effects resmectively., What is clear from

-

anmddinidn,
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Appendix

Proof of (2.6)

Assume as in Section 2 that
rﬂyé(uo - a

Assume also the normalizing conditions

Then (A2) and (A3) imply
2 .
~max{ci/N: 1<i<N} =+ 0,

From (2.4) and the definition (2.2), it follows that
lim max sup Ié.(a)—v.l/(l+|a f+lc, 1) = 0,(1),
e+0 1<iCN Ja-a,l<e . . 0 b °

Further, by normality of {vi},

1, . P
max{lvil/N 2, 1<i<N} 0.

Lemma Al It follows that

max {lc;(ag) = c;(ag)l: 1<icn} ?o.
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(Al)

(A3)

(Ad)

(A5)

(RA6)

(A7)

——




Proof of Lemma Al Make the dafinitions

Hi(u,a) =u-c -v, - a{G(au} - Yi},
i |
? so that
i Hi{ci(a),u} = 0,

The partial derivatives of q; are

3
Dy H (U,0) = o= H. (u,a) = 1 + a6(au){(1-5(au)}, »

D2Hi(u,u)

&l
o]

[
o
=]
S

I

= - {C(au) - Yi} + auS(au){1-5(au)}.,

By the chain rule,
3 - . -1 -
ﬁ_ci(a) = —-[DlHi{ci(a),a}] DzHi{ci(a),a}. (A8)
By (A4), (A6), (A7) and (AB), it follows that for everv M>0,
- y 5 *
2
N max sup %&lﬁz'ci(°)|

1<i<N Ia-un|<M/N

=0 max sup

- 1 _
{ 1 le.ayim 2y £,
Plicicn la=a |<M/N 72 1 1

This means that for every M>0,

¥ 0, (A9) l

max sup le, (a) = é-(a ) |
1¢i<N lm-molw/N]’/2 t 10

which hy (A3) completes the proof of Lemma Al.
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The term on the laft side of (2.6) can be written as

AlN + A2N + A3N' where

N
U S e o
ST 12—1 {citag) = ci(ag)) [Glage (@} = v,
1 ¥ - ST
Byg = N N Cl(“o)uc{“o"i(“n)} - G(anci(ao)}J,
LN s
RN r oy
Paw = N L cjlapg)iGlape (ag)d = Y0

0 and, since G is hounded, (A7) gives

u

By (2-5), A

Because G and its derivative are bounded, Lemma Al says that

P
Ay * 0
as long as
N -
-1 - 2
N ig__l e (a)}” = 0n(1),

which follows from (A3) - (A5). This proves (2.6).
Note that in (2.6) we are essentially stating that we can

replace o by @ in (2.5) as long as we replace "=" to " P,




This crucial subhstitution is true in fairly aeneral
circumstances. It loes not follow fron ordinary likelihood
calculations hecause, in the functinnal case, the number of

parameters increases with the sample size,




Tahle 1

lsual Probit

Reqression
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Errors-in-Variahles

Probit Reqression

Intercepnt Slone Intercept Slope

(= =1.0) (=1.0) (= - 1.0) {(=1.9)
Mean -0.963 0.663 -1.011 1.070
Mean Square =rror 0.0136 0,142 0.0155 0,110
Minimum ~1.246 0.324 ~1,371 0.454
Maximum ~0.625 1.208 -0,663 2.368
Interquartile N.1l48 N, 244 0.174 0.403

Range




Fiq.

1

Averaqe risk for simulation Adata.
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Fiqg.

2.

Average MSE

for

simulation

data.
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Fig.

3.

EIV risk function efficiency for simalated data.
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Fiq.

4.

Framingham data risks:

Mixrd variances.
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